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Abstract: 
The main design criteria for the modern sustainable development of vehicle powertrains are the high 
energy efficiency of the conversion system, the competitive cost and the lowest possible 
environmental impacts.  
An innovative decision making methodology, using multi-objective optimization technics is currently 
under development.  
The idea is to obtain a population of possible design solutions corresponding to the most efficient 
energy system definition. These solutions meet technical, economic and environmental optimality.  
This article applies the methodology on an electric vehicle, in order to define the powertrain 
configuration of the vehicle, to estimate the cost of the equipment and to show the environmental 
impacts of the technical choices of the powertrain configurations in a life cycle perspective.  
A physical model of the electric vehicle is made and coupled with a cost model for the vehicle and LCA 
technics are used for the environmental assessment. 
After multi-objective optimizations with thermo-economic and environmental objectives, the solutions 
obtained from the Pareto frontiers curve are analysed. Conclusions about the environomic design of 
the vehicle for optimal mobility service are made.  
The greenhouse gas emissions are calculated from a well-to-wheel perspective for different countries 
of use of the electric vehicle, according to their respective electricity production mixes. 
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Nomenclature 
Environomic design     Environmental, economic and efficiency design 
LCA  Life Cycle Assessment 
CAFE Corporate Average Fuel Economy 
PSA R&D  PSA Research and Development 
T-t-W  Tank to Wheel  
GNG Compressed natural gas 
SI Spark ignition 
ICE Internal combustion engine 
Peff Effective power in [kW] 
mfuel Fuel flow rate [kg/s] 
LHV  Low heating value [kJ/kg] 
NEDC  New European Drive Cycle 
EMOO Evolutionary Multi Objective Optimization 
MOO Multi Objective Optimization 
MILP Mixed Integer Linear Programming 
MINLP Mixed Integer Non Linear Programming 
NiMH Nickel Metal hydride 
GWP 100y  Global Warming Potential for 100 years in [kg CO2 equivalent] 



OPD  Ozone Deplation in [kg CFC-11 equivalent] 
CML_01_short  Impact method 
2D  2 dimensions 
3D  3 dimensions 
Pm Power of the electric motor [kW] 
Q batt Energy of the battery [kWh] 
Q supercap Power of supercapacitor[kW] 
batspecifmass Specific mass of the battery [kg] 

1. Introduction 
With the increasing trend of mobility of the human population, vehicles have to face the 
problem of primary energy resources scarcity. The vehicles need higher efficiency and better 
adaptation to the alternative energy sources.  

The need to improve the efficiency of the vehicle energy system motivates the search for 
innovative solutions during the design process. 

This paper presents a systematic methodology for the optimal design and configuration of a 
vehicle powertrain system, considering environomic criteria. Multi-objective optimization 
technics are used in combination with economic and LCA models for optimal electric vehicle 
powertrain design. 

A worldwide convergence for low CO2 emission vehicles is observed. The automotive 
industry needs to deploy massively, in the future (Figure 1), affordable technical solutions for 
highly energy efficient vehicles. Electric vehicles are seen as a way to reduce the tank to 
wheel CO2 emissions for the vehicle fleets.  

 

Figure 1 : future requirements for efficient vehicles *T-t-W CO2 emissions [1] 

Important aspects of the work are the design and the operating strategies of the powertrain 
system [2], and the reduction of the energy requirement for mobility [2], [3].  

According to the efficiency and the cost, the thermo-economic approach has been applied to 
the design of optimal hybrid electric powertrains in [4], [5] and [6]. Guzzella works also with 
the efficiency/cost balance of the systems with different simulation and optimization 
approaches. In this work a holistic decision making methodology for electric vehicle 
powertrain design is adapted.  



Finally, the environmental performances of vehicles are more and more relevant to the 
automotive customer acceptance. The Life Cycle Assessment (LCA) seems to be one of the 
most suitable methodologies for the assessment of a large range of environmental impacts of 
the product [7].  

Many previous studies discussed the environmental impacts of the vehicles [8], [9], but very 
few used a life cycle perspective integrating the LCA in the conceptual design of the vehicle 
energy system. 

This study takes into account the environmental impacts (greenhouse gases, ODP, 
acidification, eutrophication) in the earlier development stage.  

Therefore, this paper aims to combine the thermo-economic optimization methodology with 
the integration of the LCA in the conceptual design of vehicle energy system. The resulting 
method is illustrated by an application case study of the electric vehicle.  

1.1 Conversion systems and efficiency: 

The electric vehicle has electrochemical on-board energy storage devices – high voltage 
batteries. The batteries have the lowest energy density in comparison with hydrocarbon fuels, 
but the electric “tank-to-vehicle” conversion systems have a very high conversion efficiency 
[3]. Table 1 illustrates this dependency. Thermal convertors have a low conversion efficiency 
and use fuels with a higher energy density than electric “tank-to-vehicle” conversion systems. 
Thus the electric vehicle is characterized with a high powertrain mass, because of the low 
energy density of the high voltage batteries. 

Table 1 : Required energy mass (in kg) for on-board storage, for 50 MJ/100 km vehicle autonomy  
Fuels Gasoline Diesel CNG Electricity  
Vehicle autonomy [3] 50 50 50 50 MJ/100 km 
Convertors SI ICE Diesel ICE CNG ICE EM  
Efficiency of the convertors 
(average) [3] 

 
0,17 

 
0,2 

 
0,16 

 
0,9 

 
(-) 

Energy before conversion (A.1) 294 250 313 56 MJ/100 km 
Storage efficiency [3] 1 1 1 0,8 (-) 
Energy in the tank (A.2) 294 250 313 69* MJ/100 km 
Density of the energy vector [3]  

42,7 
 

42,5 
 

49,1 
 

0,648* 
 

MJ/kg 
Mass kg/100 km (A.3) 7 6 6 107 kg/100 km 
*Electricity in the battery 

From the state of the art, we have to notice that the achieved energy density is approximately 
40 Wh/kg for lead-acid, 30-55 Wh/kg for Ni-metal hydrides, 100 Wh/kg for Li-Ion, 110 
Wh/kg for molten sodium batteries [3].  

1.2 Integration of LCA in thermo-economic models used for the 
optimal conceptual design of energy conversion systems.  
This methodology is applied to the assessment of the impacts and the optimization of 
emergent technologies such as the production of fuels or electricity from biomass or 
integrated systems for electricity production.  

Some studies on the use of LCA in process design have already been conducted mainly in 
chemical process systems. The key idea is to optimize a system, considering a cumulated 
environmental impact and minimizing the operating costs.  



Some recent studies [11],[12],[13],[14] presented a systematic approach for integrating LCA 
in process systems design using multi-objective optimization in the field of combined fuels 
and electricity production from renewable sources (biomass, geothermal). The major 
advantage is that it allows considering simultaneously the influence of the process design and 
its integration on the thermodynamic, economic and environmental life-cycle performance at 
the early stages of conceptual design [14].  

In particular the aims of this paper are to apply the LCA- based multi-objective optimization 
in the early design stage and to design an energy conversion system for an electric vehicle, 
taking into account the cost, the efficiency and the usage of the natural resources, thus 
minimizing the generated life- cycle impacts.  

2. Methodology – Computational framework 
2.1 Optimization methodology 
A multi-objective optimization model with an evolutionary algorithm has been developed. An 
electric vehicle dynamic model gives the mechanical flows of the vehicle. The energy 
integration and optimization structure is the slave structure, linked by the state variables with 
the dynamic and economic models.  

 

 

The developed model (Figure 2) is a mixed integer non- linear problem (MINLP). It is solved 
by a decomposition method, using a master-slave algorithm in which decision variables can 
be grouped in master or slave sets [15].  

The master set of decision variables includes the type and the size of the equipment. These 
variables are used to define a superstructure for the vehicle energy system [16]. The energy 
technologies database is presented as a list of available equipment, and the characterizing 
equipment tags are inputs for the master optimization problem. The master optimization is 
solved by an evolutionary genetic algorithm - EMOO. 

Figure 2: Structure for multi-objective optimization 



The superstructure receives sets of master decision variables and objective functions. Then the 
efficiency and the economic states are calculated using simulation models of the vehicle 
dynamic behavior. The cost and the LCA models are also executed. The list of fuels or 
electricity, operating cycles (time, speed profiles) and ambient temperatures are requested for 
the optimization. The output is a proposition of equipment. The selected superstructure is in 
the master level and the results of the optimization are used in the post-processing phase to 
calculate the objective functions of the master problem [16]. The objective functions are 
environomic (environmental, economic and efficiency) indicators. After the specified 
iterations by the user, the optimal solutions converged on the Pareto frontier curve.  

2.2 Dynamic vehicle model: 

The vehicle simulation tool is SIMULINK®. The vehicle model is based on mechanical and 
electric flows. For the moment the thermal behaviour of the vehicle for comfort or mobility is 
not taken into account. The conversion system is composed of an electric motor and gearbox. 
An energy recovery model, for the deceleration phase is developed and coupled to the 
reversible conversions in the motor or generator mode of the electric machine. The energy 
storage devices are the battery and a parallel structure of supercapacitors. The level of the 
models is quasi-static. The vehicle is able to follow dynamic profiles coming from a library of 
normalized vehicle drive cycles. The vehicle is defined with a physical model (Table A.1) and 
the NEDC cycle is used for the dynamic calculations.  

2.3 Economic Model: 
The cost of the vehicle is computed for each run as a function of the size and efficiency of the 
energy convertors and energy storage devices. The cost of the equipment comes from the 
literature and is related to the size of the components. The cost of the electric motor includes 
the cost of the power unit. The battery cost is sensitive to the battery type and the energy 
storage capability of the material. The nominal cost represents the vehicle shell cost, without 
the powertrain components. This linear correlation (3), (Table 2) takes into account the price 
of the parts and the manufacturing cost of the vehicle shell and includes the margin of the 
carmaker. The correlation is built using the Peugeot Citroën official customer prices for 
different vehicle classes and illustrates the link between the increasing cost and the increasing 
size and weight of the vehicle. The car shell is defined as a completely equipped vehicle 
(body, interior equipment, wheels), except the powertrain. The powertrain for the electric 
vehicle is composed of the electric machine, gear box, super capacitors and high voltage 
battery with power electronics. 

For each calculation, a new vehicle mass is calculated and updated with the mass of the 
defined powertrain. 

Table 2: equations for the economic model 
Components  Costs [€] 
Convertors   
Electric motor [4] 
 

30 [€/kW]*power_el.motor [kW]                                               (1) 
Storage system  
Battery [4] 

600*[€/kWh]*
( )5126.0)_log(*2477.0 +typebatbat

bat
specifmassq                 (2)  

Body   
Nominal cost (car shell) 17.3*car_shell_mass[kg]-3905.4 [€]                           (3) 
Vehicle use in France 2013 [17]  
Electricity household 0.14269 [€TTC/kWh] 



Electricity industry 0.07768 [€TTC/kWh] 
Gasoline 1.645 [€/L] 
Diesel 1.451 [€/L] 
Emissions 
CO2 emissions 

 
Taxes system bonus/malus (Table B.1) 

 

A simplified vehicle objective cost function is constructed, composed of the vehicle 
powertrain cost and the vehicle body cost during the production phase.  

The total mobility cost is composed of the investment and operating costs. 
The cost equations are presented in Appendix B.  

2.4 Environmental model: 
The life cycle of a product, a system or a service has usually three distinct successive phases: 
the production phase, the use phase and the end-of-life phase. The vehicle unitary processes 
and flow diagram are defined in Figure 3. 

The functional unit for the LCA is the total distance driven throughout vehicle’s lifetime - 
150000 km [17].  

 

Figure 3: vehicle unitary processes flow chart – system definition 

The inventory in the production phase is composed of: 

! the mass material balance for each part of the vehicle sub-system 
! the corresponding manufacturing process in the Eco Invent® database 
! the data about the manufacturing processes in the vehicle production plant (welding, 

painting, assembly) 

The unitary processes and the raw materials for the production of the parts come from the Eco 
Invent® database. The vehicle is divided into seven substructures, which allows to distinguish 
the powertrain: electric machine, low voltage battery, high voltage battery, power unit, 
thermal engine and gearbox, vehicle body (car shell).  

The use phase corresponds to the energy consumption of the vehicle. The inventory for the 
corresponding “energy carrier” production comes from the Eco Invent® database (Table 3). 
The end-of-life phase is represented by the average car disposal process, issued by the Eco 
Invent® database.  

 

 

 



 

Table 3: Energy vectors database (data of 2005) 
Energy vector Eco Invent process number Description 
Electricity  
 
 
 
 

Nuclear (France) #700 
Hydraulic (Norway) # 712 

Coal + other renewable (Germany) #706 
Hydro + Nuclear (Switzerland) #697 

Coal (Poland) #715 

77% Nuclear, 12% hydro 
87% Hydro 

44% coal, 25% nuclear 
31% hydro, 44% nuclear 

88% coal 

 

This study refers to the four main impact categories used in the automotive industry: GWP 
100 years, acidification potential, eutrophication potential and ozone depletion (Table C.1). 
The CML01_short impact method is used in the master superstructure for MOO calculations. 
This method has just four impact categories and this allows for an acceptable computing time, 
which is important for the main validation of the environmental objective optimization.  

3. Multi-Objective Optimization of the vehicle energy 
system 
3.1 Problem definition:  
In this paper a MOO is performed for electric cars. The environmental impacts are chosen as 
optimization functions, in addition to the cost and the efficiency. The environomic 
optimization is applied and discussed for an electric vehicle. Based on the Pareto curves 
drawn by the MOO, optimal vehicle configurations of the cars are discussed and decided. 
The environmental impact categories (GWP, eutrophication, acidification and ODP), coming 
from the LCA model as performance indicators in the superstructure, are used as objective 
functions.  

Table 4: Decisions variables for design – multi-objective optimization problem 

 
The electric propulsion components are defined as decision variables for the design of the 
system. 
The optimization function is defined as: 
 
! = #$%&,()*++,	(-./012*/	3	,4567, 89:	;<=>?76,  !7595<"#                                                  (4) 
 
 
 
 
The autonomy is defined as the distance in kilometers covered by the vehicle in one full 
charge of the high voltage battery (A.4).  
The optimization function maximizes the autonomy and minimizies the environmental 
impacts and the cost. According to the number of objective functions one distinguishes 2D 
and 3D optimization.  
2D MOO : 

Electric propulsion system component Range Unit 
Electric machine [15-50] kW 
Battery Ni-MH, 30 Wh/kg [10-50] kWh 
Number of super capacitors 
in a parallel structure 

[0-5] [-] 

Max Power of supercapacitors 87,5 kW 

Design variables Performances 
indicators 



• maximize autonomy  
• minimize environmental impacts 

3D MOO: 
• maximize the autonomy 
• minimize the environmental impacts  
• minimize the cost  

 

3.2 MOO results for environomic vehicle energy systems – 2D MOO 
The solutions of two objective optimization functions converged on a Pareto frontier optimal 
curve (Figure 4). They are obtained by simulation of the superstructure model described in 
figure 2.This Pareto optimal curve represents the trade-off between the functions: the 
autonomy and the environmental categories (Acidification, GWP, Eutrophication and ODP).  

 

 

 



 

Figure 4: Pareto frontier curves for 2D MOO – Environmental impact and autonomy 

On the NED Cycle a correlation is visible for all graphs – all environmental categories are 
increasing with increasing autonomy. The reason is that, for electric vehicles, the autonomy is 
related to the battery capacity and respectively its size. The environmental impacts show the 
importance of the production phase of the vehicle and the impact of the battery production on 
the global LCA.  

In the case of electric vehicles, the environmental impacts in the use phase are related to the 
electricity consumption and production mixes. The MOO is done in case of vehicle usage in 
the case where the vehicle is used in France. The French electriciy mix is in majority nuclear-
based (77%) (Table 3).  

Table 5 gives examples of orders of magnitude for the vehicle design with minimized 
environmental impacts.  

Table 5: Optimal vehicle design solutions for 2D MOO  

 

The correlations of the environmental impact with the autonomy can be approximated by 
quadratic functions, with very small quadratic coefficents (Table 6). In the selected autonomy 
range from 50 km to 250 km, the correlation functions are almost linear.  

Table 6: environmental impact vs autonomy correlations for the use phase in France and for the autonomy range 
of [50-250] km 

GWP opti ID 2 ID 3 ID 4 MINI E ID 1 
Vehicle mass [kg] 730 1015 1305 1465 1375 
Energy of the battery 
[kWh] 10 24.8 42 30 46.4 
Power max of the 
supercapacitor [W] 52500 35000 52500  87500 
Electricity consumption 
[kWh/100km] 8.5 9.8 11.4 13 11.8 
Autonomy [km] 64 150 227 228 242 
Vehicle cost [€] 14880 25082 35804 32000 38938 
Use cost [€] on FU 1820 2104 2434 2782 2516 

Correlation use phase France Equation Error 
Acidification=f(autonomy)  512.628181.00045.0 2 ++= xxy

  
9991.02 =R     (5) 

GWP 100y =f(autonomy)  3213127.200701.0 2 ++= xxy  
9983.02 =R     (6)  

Eutrophication=f(autonomy) 0441.40615.00002.0 2 ++= xxy  
9993.02 =R      (7) 



 

The comparison of the vehicle design is done for the same optimal autonomy points and for 
different environmental impact categories (Table 7 and Table 8).  

The vehicle design solution - Point 4 is representive of the electric vehicle in the small B 
segment, with urban and peri – urban usage. 

Point 2 is compared to point 4. The solutions for point 2 correspond to light and small urban 
vehicles, adapted for a daily commuting distance of 30 km. The design solutions are optimal 
for each impact category - Acidification, GWP, Eutrophication and ODP (Table 7, Table 8). 

Table 7: MOO results for different environmental functions – Acidification, GWP, Eutrophication, ODP for 
autonomy of 227 km 

 

Table 8: MOO results for different environmental functions – Acidification, GWP, Eutrophication, ODP for 
autonomy of 64 km 

 

For the points ID 4 and ID 2 (Table 7, Table 8) the selected optimal vehicle design is the same 
for all optimal points of each category. Minimizing the GWP 100 years category leads to 
minimizing the other 3 impact categories. To conclude, the environmental optimization can be 
simplified to one impact category – with GWP as the objective to minimize.  

On the NED Cycle the use of supercapacitors doesn’t influence the autonomy of the vehicle. 
The supercapacitors are efficient by delivering high power in a small laps of time, and the 
battery is used for energy storage. The supercapacitors are activated during the acceleration 
and deceleration phases. The autonomy depends mostly on the quantity of energy available on 
board – i.e. from the battery.  

ODP = f(autonomy)  469 10.310.110.8 −−− ++= xy  
9984.02 =R      (8) 

ID 4 Mini Acidification Mini GWP Mini Eutrophication Mini ODP 
Vehicle mass [kg] 1305 1305 1303 1300 
Energy of battery [kWh] 42 42 42 42 
Power max supercap [W] 87500 17500 17500 52500 
Electricity consumption [kWh] 11.4 11.4 11.4 11.3 
Autonomy [km] 227 227 227 227 
GWP [kg CO2 eq] 11472 11319 11349 11405 
Acidification [kq SO2 eq] 478.9    
Eutrophication [kg PO4 eq]   30.58  
ODP [kg CFC-11 eq]    9.46.10-4 

ID 2 Mini Acidification Mini GWP Mini Eutrophication Mini ODP 
Vehicle mass [kg] 783 730 755 782 
Energy of battery [kWh] 10 10 10 10 
Power max supercap [W] 70000 52500 87500 87500 
Electricity consumption [kWh] 8.6 8.5 8.6 8.7 
Autonomy [km] 63.04 64 64 64 
GWP [kg CO2 eq] 4894 4657 4811 4918 
Acidification [kq SO2 eq] 125.3    
Eutrophication [kg PO4 eq]   8.89  
ODP [kg CFC-11 eq]    3.8.10-4 



3.3 MOO results for environomic vehicle energy systems – 3D MOO 
There is a trade-off between the cost and the autonomy. The cost seems to have the same 
variation as the environmental impact: when the autonomy increases, both the cost and the 
environmental impacts increase, and vice-versa. It is interesting to perform a MOO with three 
objectives, including the cost. The objectives are: 

• maximize the autonomy [km] 
• minimize the GWP [kg CO2-eq] 
• minimize the cost [€] 

The Pareto curve is displayed in Figure 5. The Pareto is obtained by running the 
superstructure model described in fugure 2.  

 

 

Figure 5: 3D MOO Pareto frontier curve- electric vehicle 

Figure A.1 shows the correlation between the autonomy, the cost and the battery energy 
capacity. The major impact of the cost comes from the battery size, proportional to the battery 
energy. The coefficient of proportionality between the cost and the energy in the battery is 
600 €/kWh.  

To visualize more clearly the dependency between the cost and the GWP, the Pareto curve is 
plotted in 2D, in the cost-GWP plane (Figure 6).  

 

Figure: 6 GWP vs cost Pareto Curve 
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The curve is almost a line. Using a linear interpolation, the expression of the dependency 
between the cost and GWP is: 

1.2124*3519.0 += CostGWP  (9) 

It is important that the slope of the linear model in (9) is positive. It enables to consider the 
cost or the GWP as the second objective for the MOO, the first objective being the autonomy 
to maximize. Furthermore one can reduce the dimension of the optimization problem from 3 
to 2. Thanks to the fact that the slope in (9) is positive, the optimum of the cost is reached 
when the optimum of the GWP is reached. Therefore, this 3D optimization (Table 9) should 
lead to the same optimal configuration found in the 2D optimization (Table 7, Table 8).  

Table 9: 3D MOO optimal solutions and cost structure 

 
The optimal solutions are detailed for two points with a characteristic autonomy: 

• urban car adapted to commuting mobility (ID 2)  
• car with normal autonomy for electric propulsion (ID 4).  

The autonomy is related to the battery’s energy capacity. The cost structure is shown in 
Figure 7.  

 
Figure 7: cost structure for the optimal solutions 

The powertrain cost is related to the size of the powertrain components – power of the electric 
machine and the energy capacity of the battery. The high voltage NiMH battery, with specific 
energy of 30 Wh/kg, represents the biggest impact on the powertrain cost.  

total investment
cost for powertrain

total investment
cost for vehicle total operating cost total cost of

mobility

ID 2 950 9673 1785 11458

ID 4 20600 39271 2394 41665
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cost structure on FU 150000 km

 ID 2 ID 4 
Vehicle mass [kg] 730 1305 
Energy of the battery [kWh] 10 42 
Power max of supercapacitor [W] 52500 52500 
Power el engine [kW] 30 45 
Electric consumption [kWh/100km] 8.5 11.4 
Autonomy [km] 64 227 
Cost powertrain [€] 7950 27600 

Cost battery [€] 6000 25200 
Cost el. machine [€] 900 1350 
Cost supercaps [€] 1050 1050 

CO2 Bonus [€] -7000 -7000 
Total investment for customer for powertrain [€] 950 20600 
Cost car shell [€] 8723 18671 
Total investment cost for customer for vehicle [€] 9673,6 39271,1 
Total operating cost on FU [€] 1785 2394 
Total cost of mobility [€] 11459 41665 
All costs in this table are computed using equations 1 to 3 of Table 2   



On the other hand the cost of the car shell is linearly related to the mass of the vehicle (3). 
Thus when increasing the mass of the car shell by a factor of 2, the cost of the car shell 
increases by 2. The vehicle in ID4 represents a higher vehicle class, which is suited for high 
way and urban use. This vehicle has more interior equipment which contributes to the higher 
car shell price.  
This linear relation takes into account the prices of braking systems, and materials used to 
make and equip the vehicle. Bigger vehicles with higher mass need braking systems, 
suspensions, gear-box with higher performances and more vehicle equipment. 
When increasing the autonomy, the customer investment cost for the powertrain increases 
despite the environmental bonus delivered by the government. The customer investment cost 
of the powertrain for ID 4 is 20600 €.  
The customer investment cost for small urban vehicles (ID 2) is very interesting – around 
10000 €, this is equivalent to the investment for urban vehicles with a conventional thermal 
powertrain.  
When increasing the autonomy, the vehicle mass and the size of the other equipment are also 
increasing. Globally one has four times more investment cost for around four times more 
autonomy. 
The operating cost is related to the electricity consumption of the vehicle and to the price of 
electricity during the vehicle use phase and depends on the place of use. The calculation here 
is done with the hypothesis that the vehicle is driven in France with an electricity price of 0.14 
€/kWh.  
Because of the high conversion efficiency of the electric powertrain and the price of the 
electricity, the operating cost of electric vehicles, based on the functional unit of 150000 km, 
is very competitive (Table 9) in comparison with vehicles with a conventional thermal 
powertrain. 
The investment cost contributes very strongly to the total mobility cost.  
The life cycle model is used to calculate the environmental impacts for the life cycle of the 
vehicle and especially the influence of the electricity production mix in the use phase. 
The LCA is done for the energy database in Table 3 and ID4. The results are shown in Figure 
8.  

 
Figure 8: GWP results for an electric car during the use phase in different countries.  

In the powertrain production phase, the high voltage battery represents the major 
environmental impact - around 60% (Figure C.1).  
The materials with the biggest impact on the GWP are the materials extracted for the NiMH 
battery production. The most important impact comes from the steel and the aluminum for the 
body production and the plastics used in the interior equipment. For the body construction, 
these are the materials with the largest mass impact on the total body. The total cotribution of 
the production phase of the vehicle is around 10000 kg CO2 eq. 
The vehicle and the powertrain components are considered as being produced in France.  
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The production phase is also the biggest contributor for the other categories – Acidification, 
ODP and Eutrophication (Figure 9).  

 

 

 
Figure 9: electricity mix and vehicle life cycle influence on the categories Acidification, 

Eutrophication ODP  

The electricity mix has the biggest impact on the use phase. According to the mix 
composition (Table 3), the GWP can increase more than twice during the use phase (case of 
Poland – Figure 8) or can represent 10% of the production phase GWP (case of France- 
Figure 8). The use phase GWP can be even lower (less than 10%) in the case of a mix with 
dominant renewable energy – for example in Norway. 
In this study we took the hypothesis that the battery of the vehicle is recycled and has a 
second life for other devices. For this reason the end-of-life is approximated to the end-of-life 
process of a conventional vehicle.  

4 Conclusion: 
This paper describes the combination of the efficiency-economic 2D MOO with the 
integration of environmental impact minimization in the earlier stages of the conceptual 
design of electric vehicle energy systems. 3D multi-objective optimization is applied to the 
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environomic design of electric vehicle powertrains. It consists of using environmental 
impacts, cost and autonomy as optimization objectives.  

The main conclusion from the 2D optimization, with environmental and autonomy objectives, 
is that the vehicle design is the same for all optimal impact categories. The environmental 
optimization can be simplified to one impact category – with GWP as the objective to 
minimize. 

The 3D optimization Pareto shows a linear correlation between the cost and the GWP with 
positive slope. This illustrates that the optimal solution of the cost function is reached when 
the optimal solution of the GWP function is reached. The optimization problem can be 
reduced from 3 to 2 dimensions. The 3D optimization leads to the same powertrain design 
configurations for the targeted autonomies (ID 2= 64 km and ID 4= 227 km). 

The cost structure for these two solutions is discussed. The battery represents the biggest 
impact on the powertrain cost – between 75% and 90%, depending on the autonomy. When 
increasing the autonomy, the customer investment cost for the powertrain increases because 
of the battery cost and despite the environmental bonus delivered by the government. The 
electric vehicle is an adapted solution for urban mobility with around 60 km of commuting. 
The very low operating cost of the electric vehicle (0.00119 €/km for design ID 2) presents 
major advantages in comparison to the equivalent thermal vehicle.  

The governmental bonus for very low T-t-W CO2 emissions of 7000 € (applied in France), 
can help to achieve customer acceptance for the higher investment cost of the electric vehicle. 
For urban vehicles with around 60 km of autonomy, the investment cost is equivalent to the 
customer investment for conventional vehicles – around 1000 €.  

The environmental impacts of the electric vehicle during the use phase are related directly to 
the place of use and the electricity mix of the country. GWP during the use phase can be very 
low (between 5% and 15%) of the total GWP impact, for low CO2 electricity mixes (Norway, 
France and Switzerland), or can double (Germany) or quasi triple (Poland) because of the 
high coal percentage used for electricity production. In the production phase of the electric 
vehicle, the high voltage battery is the main contributor for all the impact categories.  
An interesting perspective could be to perform new multi-objective optimization, based on 
functional unit of 1 km and two objective functions – minimizing the cost and minimizing the 
electricity consumption per kilometer. This will help to choose the most efficient powertrain 
equipment per km and so the autonomy of the vehicle (based on one full charge) should 
increase.  
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Table A.1: vehicle characteristics for the Simulink model 

                                                          

 

 

 

 

 

 

 

Figure A.1: correlations between a) cost and battery energy capacity and b) autonomy and 
battery energy capacity 

Appendix B: 
[ ]€    engine)cost_(th +machine) cost_(el+rycost_batte =traincost_power  (B.1) 

[ ] 4.3905kgmass*17.3hellcost_car_s −= [ ]€                                                                               (B.2) 
 
                 (B.3)  

[ ]€,emissions) cost_(CO2+cost_shell +traincost_power=_costinvestment            (B.4) 

[€]  tingcost_opera+)investmentomer cost_(cust=itycost_mobil total            (B.5) 

 

Characteristics Symbols and Values 
Gravity  g=9,81 [m/s²] 
Air Density 
Bearing coefficient 

ρair=1,2 [kg/m3] 
µ=0,002[-] 

Rolling coefficient fr = 0.01 [-] 

Wind velocity  vwind= 0 [m/s] 
Slope p= 0 [%] 
Aerodynamic coefficient Scx=0,58 [m²] 
Vehicle mass  1420 [kg] 
Diameter bore 
Diameter wheel 

d=0,0215 [m] 
D=0,52 [m] 

 [€]
100

150000*onsumptionelectric_c*tricity)cost_(elec=tingcost_opera



Table B.1: CO2 emissions cost, environmental cost, supported by the French government for 2013 [18] 
Emissions [CO2(g)/km] (+)Bonus / (-) Malus [€] 

20≤  
5020 ≤〉 and  
6050 ≤〉 and  
9060 ≤〉 and  
10590 ≤〉 and  
135105 ≤〉 and  
140135 ≤〉 and  
145140 ≤〉 and  
150145 ≤〉 and  

+7,000 [€] 
+5,000 [€] 
+4,500 [€] 
+550 [€] 
+200 [€] 

0 [€] 
-100 [€] 
-300 [€] 
-400 [€] 

155150 ≤〉 and  -1,000 [€] 
175155 ≤〉 and  -1,500 [€] 
180175 ≤〉 and  -2,000 [€] 
185180 ≤〉 and  -2,600 [€] 
190185 ≤〉 and  -3,000 [€] 

200190 ≤〉 and  -5,000 [€] 
230200 ≤〉 and  

230〉  
-6,000 [€] 
-6,000 [€] 

 

Appendix C: 
Table C.1: CML01_short impact method and impact categories: [19] 
Category Definition  Unit 
acidification potential, 
average European 
 
climate change, GWP 100 
years 
 
 
eutrophication potential, 
generic 
 
 
 
 
stratospheric ozone 
depletion, ODP steady 
state 

H2CO3 formation in oceans and on land by dissolving CO2 in water 

Significant and lasting change in the statistical distribution of weather 

patterns over an extended period of time (100 years) 

Environmental response to the addition of nitrates and phosphates. 

(CML01)  

! Mass of algae, phytoplankton " 

! Biodiversity of fish species # 

 

kg SO2-eq 
 
 
 

kg CO2-eq 
 
 
 
 

kg PO4-eq 
 
 
 

     kg CFC-11-eq 
 

 

 
Figure C.1: powertrain components contributions for the production phase 
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